# Finding Moment Force F X Axis Position Vector Triple Scalar Product R J M F J Q

This post categorized under Vector and posted on May 4th, 2018.

This Finding Moment Force F X Axis Position Vector Triple Scalar Product R J M F J Q has 1242 x 667 pixel resolution with jpeg format. Scalar And Vector Examples, Is Average Velocity A Vector Or Scalar, Is Distance A Vector Or Scalar, Acceleration Scalar Or Vector, Scalar And Vector Quangraphicies, Position Vector Formula, Is Distance A Vector Or Scalar, Scalar And Vector Quangraphicies was related topic with this Finding Moment Force F X Axis Position Vector Triple Scalar Product R J M F J Q. You can download the Finding Moment Force F X Axis Position Vector Triple Scalar Product R J M F J Q picture by right click your mouse and save from your browser.

Show transcribed image text For finding the moment of the force F about the x-axis the position vector in the triple scalar product should be . If r 1 i 2 j m and F 10 i 20 j 30 k N then the moment of F about the y-axis is N-m.4 Complete the triple scalar product solve for F F about the x-axis the position vector in the triple scalar to find the moment of a force about an axis

Moment of a Force About a Specified Axis. Learning Goal To gain insight into the independence of the scalar triple product from the point on the line chosen as the reference point of the calculation.or as the mixed triple product of the unit vector the position vector and the force and the moment M a of the force F about the axis a pgraphicing through the where F is the magnitude of the force and d is the perpendicular distance between point B and the line of action of the force. Distance d is commonly referred to as the moment arm of the force while point B is called the moment center.. In this case the moment about point B can be interpreted as the measure of the tendency of force F to cause

If the moment of a force F about the point O is represented by the vector M o then it can be shown that. M o r F. Here r is the position vector of any point on the line of action of F with respect to point O. Expanding the determinant form of the cross product gives . M o (r y F z - r z F y)i (r z F x - r x F z)j (r x F y - r y F x)k. From this